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16. Abstract {continued)

bridge segments. Good correlations were obtained between calculated values
and measured data.

Long~-term bridge deflections and pier rotations were also measured.
Measurements provided a record of how the Red River Bridge behaved over a

period of five years,

Measurements were also made over four 24-hour periods to determine thermal
response due to the diurnal and seasonal temperature variations. Using the
measured concrete strains and temperature data, non-Tinear temperature
behavior was confirmed and its effects quantified. Restraint stresses across
the three instrumented bridge sections and continuity thermal stresses were
calculated., Statistical analyses were performed to evaluate the probability
density function of the temperature differentials between top and bottom of
the box-girder section. Shear stresses in the webs of the instrumented
segments from diurnal temperature changes were calculated. Measured shear
strains included continuity shear strains and torsional shear deformations.
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INTRODUCTION

In the past decade, segmental concrete construction has been one of the
most popular construction methods among U.S. designers and constructors for
medium- and long-span bridges. Although segmental concrete construction has
been used extensively and successfully in European countries since the early
1950s, post-tensioned, segmental concrete box-girder bridges were introduced
into the United States only in the 1970s. With new and innovative concepts in
designs, segmental concrete box-girder bridges have become an excellent design
alternative 4in bridge engineering. The construction method offers both
aesthetic advantages and economy for bridges in North America.

Because segmental methods of constructing post-tensioned concrete
box-girder bridges were relatively new in the United States, design and
construction expertise have been primarily adopted from European practices.
Specific information on the effects of time-dependent material properties and
thermal gradients on bridge performance was needed for American construction.
There was also a lack of design provisions and design criteria for segmental
box~-girder bridges. Consequently, a comprehensive field measurement program
of the Red River Bridge at Boyce, Louisiara, was initiated. These
measurements reflected behavior of a typicail segmental box-girder bridge built
in the southern part of the United States. Analyses to evaluate
time-dependent and thermal behavior of the bridge were also carried out.
Actual <concrete mixes of the ‘instrumented bridge segments and design
construction schedule were recorded and used in the analyses.

BACKGROUND

In recent years, the Jlong-term behavior of several segmental concrete
box-girder bridges in the United States has been investigated. Construction
Technology Laboratories, Inc. (CTL) has instrumented six segmental box girder
bridges. They are the Denny Creek Bridge (1) 1in Washington State, the
Kishwaukee River Bridge (2 and 3) in ITlinois, Linn Cove Viaduct (4) in North
Carolina, Sunshine Skyway Bridge in Florida (5, 6}, Bayview Bridge in Quincy,
I11inois (7), and the Weirton-Steubenville Bridge in West Virginia. Each of
these bridges represented a specific type and means of construction. Common



objectives for these instrumentation programs were long-term measurements of
lTongitudinal concrete strains and temperature distribution across bridge
sections. Of course, specific objectives for each program were different and
were reported in detail elsewhere (1-7). With the exception of Denny Creek
Bridge, all instrumented bridges were of precast concrete construction. Denny
Creek Bridge used cast-in-place, three-stage construction.

In cast-in-place construction, post-tensioning is applied to concrete at a
relatively early concrete age. Because concrete c¢reeps and shrinks
significantly at early concrete ages, time-dependent behavior for
cast-in-place construction is expected to be more significant in Tong-term
bridge behavior than that for precast construction. Consequently, a more
in-depth 1investigation on long-term behavior of cast-in-place bridges was
executed.

Instrumentation of the Red River Bridge provided a unique opportunity to
obtain actual behavior of a cast-in-place concrete box-girder bridge. Red
River Bridge 1is a long-span, continuous bridge using non-prismatic box
segments. The balanced cantilever method of construction with form-travelers

was used.
Current design for thermal response of box girders 1is still based on
grossly simplified assumptions (8-10). Little data was available +to

substantiate the sufficiency of existing code provisions for daily and
seasonal temperature cycles. Though a substantial amount of work has been
performed overseas on the thermal response of bridges, findings were not
necessarily applticable in North American climates without evaluation and
verification. In view of the lack of field measurements on thermal response
of bridges in North America, it became logical to instrument a Tlong-span,
cast-in-place segmental bridge in the southern region of the United States.
The Red River Bridge was thus selected. Together with the measured
temperature data from other long-span concrete box-girder bridges, collected
data on the Red River Bridge has broadened the temperature data base for the
development of design provisions for large-span, concrete box girder bridges.



OBJECTIVES AND SCOPE

The objectives of this project were to measure and evaluate time-dependent
deformations, deflections, and temperatures of the superstructure of the Red
River Bridge in Boyce, Louisiana. Collected data was used to evajuate design
criteria for cast-in-place box-girder bridges in the United States.

The investigation was divided into the following parts:

a. Field Instrumentation

b Material Properiy Tests

c. Data Analysis and Interpretation
d Reports

FIELD INSTRUMENTATION

Three cross sections of one selected span in the Red River Bridge were
instrumented. Selected sections represented sections next to the pier, at
quarter span, and near mid-span. Each section was instrumented to measure
Tongitudinal concrete strains, vertical bridge defliections, and temperature
distribution across the box girder. A1l measuring sensors were installed by
CTL personnel. Initial readings of all installed gages were also recorded by
CTL. Subsequent readings were taken by field engineers of Louisiana
Transportation Research Center (LTRC). Readings were taken before and after
every significant event that would affect bridge behavior. Collected field
data was sent by LTRC to CTL for data reduction and interpretation.

Effects of - temperature variations on bridge performance were
investigated. Temperatures and strains of the three instrumented segments
were also monitored over four 24-hour perjods. The measurements represented
the seasonal and diurnal behavior of the bridge.

MATERIAL PROPERTY TESTS

Paraileling the field finvestigation, Tlaboratory tests were performed on
6x12-1n. concrete cylinders. Concrete cylinders were sampled from the same
concrete used for each instrumented section. Physical property fests included
measurements of concrete compressive strength, modulus of elasticity,



Poisson's ratio, coefficient of thermal expansion, creep, and shrinkage.
Tests conforming to the appropriate sections of the latest ASTM Specifications
were conducted.

Property tests were performed either under controlled, constant laboratory
conditions or 1in the outdoor environment at the bridge site. As such,
time-dependent properties of concrete cured under indoor and outdoor
conditions were measured. LTRC performed all concrete property tests.
Results were collected and sent by LTRC to CTL for analysis.

DATA ANALYSIS AND INTERPRETATION

Long-term, non-l1inear analysis of the Red River Bridge using the concrete
mix properties was performed. Effects of time-dependent properties on bridge
performance were fJnvestigated. A computer program developed under another
investigation was used in the analysis. Time-dependent deformations from
concrete creep and shrinkage were calculated. To simulate the conditions of
the bridge, a design construction schedule was used in the analytical model.
Calculated strains were compared with measured values.

Thermal movements and temperature-induced stresses were calculated.
Effects of the induced thermal movements and restraint thermal stresses on
bridge behavior were discussed. Thermal effects included longitudinal and
transverse temperature movements, nonlinear sectional restraint stresses, and
continuity stresses.

REPORTS

An  interim report outlining the progress of the finvestigation was
submitted in October, 1985. Collected data and preliminary findings were
discussed. In addition, progress reports were submitted quarterly and later
biannualiy to LTRE. This report, which 1is the final report of the
instrumentation program, covers all aspects of the finvestigation, inciuding
data and findings reported earlier. 1In addition, detailed descriptions of the
nonlinear, time-dependent analysis, thermal investigation, and the discussion
of measured and analytical results are given. Conclusions drawn from the
observed behavior of the Red River Bridge are presented,



DESCRIPTION OF THE RED RIVER BRIDGE

The Red River Bridge shown in Figure 1 is Tlocated in Central Louisiana,
northeast of Boyce as shown in Figure 2. It is the first concrete, segmental
box-girder bridge built in Louisiana. The bridge is made up of six spans with
span lengths varying from 228 ft 9 in. to 370 ft. An elevation of the bridge
is shown in Figure 3. As the name of the bridge suggests, it spans across the
Red River. The total Tength of the bridge s 1,797 ff 6 in.

The Red River Bridge is a single-cell, non-prismatic, box girder bridge
designed to support three traffic lanes. The roadway width of the bridge is
42 ft 10 in. The bridge has haunches at the pier supports. An artist's
rendition of the Red River Bridge is shown in Figure 4. The depth of the
girder changes from 17 ft 4 in. at the pier supports to 7 ft 4 in. at mid-span.

The Red River Bridge was made up with casi-in-place concrete segments.
The Tlength of most bridge segments is 15 ft 8 in.; however, segmenis next to
the pier were generally shorter in Tlength. Maximum segment Jength was 16 ft
4 in. The balanced cantilever method of construction was used.
Form-travelers positioned at the end of the cantiievers were wused +to
facilitate concrete casting. Concrete segments were cast alternatively on
each side of the pier cantilevers.

Two pictures of form-travelers sitting at the end of the cantilevers at
different stages of construction are shown in Figures 5 and 6. A maximum of
four form-travelers were used at one time during construction.

The Red River Bridge was designed 1in accordance with AASHTO Standard
Specifications for Highway Bridges, 1977 (8) and Interim Specifications, 1978
(9), and 1979 (10). Design compressive strength of concrete at 28 days was
5000 psi. The post-tensioning steels used were seven-wire, low-relaxation
strands and high-strength Dywidag bars. Design live loads were HS20-44 truck
loading or uniform lane loading, whichever governed. A superimposed dead load
of 12 psf was included in the design to account for a future wearing surface.
Bridge dimensions were designed based on an annual average temperature of
68°F. A Tlinear temperature gradient of 9°F across the depth of the bridge
section was used 1in the design for temperature effects. Time-dependent
properties of concrete such as creep and shrinkage were calculated according
to FIP-CEB recommendations (11).



Figure 1. The Red River Bridge.
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FIG, 3-4 ARTIST'S RENDERING OF THE RED RIVER BRIDGE
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Figure 5. A close-up view of form-travelers.
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FIG, 4-4 QPENING FOR INSTALLATION OF CARLSON STRAIN METERS IN
THE WEB OF THE BOX GIRDER
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Figure 11. 1Installation of Carlson strain meter.
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FIG. 4-5 INSTALLATION OF CARLSON STRAIN METER
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Figure 12. An installed Carlson strain meter,
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Figure 13. Carlson sftrain meter lead wire bundlie at the bottom slab.
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FIG, 4-7 CARLSON STRAIN METER LEAD WIRE BUNDLE AT THE BOTTOM SLAB

construction technology laboratories



Figure 14. Strain rosette.
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Rejative deflections were calculated using the elevation profile taken on
June 28, 1984, or April 3, 1985 as the datum line. It is noted that June 28,
1984, represented the completion of post-tensioning operations in the
instrumented span. At that time, the installation of guard railings and the
riding roadway overlay was not yet completed. Relative deflections in Table 3
are presented in foot units. Positive relative deflections Tisted in Table 3
represent downward movements relative to the datum elevation profile, and
negative relative deflections indicate upward movements relative to the datum
elevation profile. Deflection history of the east deflection point in Segment
1323 is shown 1in Figure 60. Wide scattering of measured deflections was
observed. However, the trend of increasing positive or downward deflection is
quite obvious from Figure 60. Maximum downward deflection of 0.9 in. was
recorded for the east deflection point on Segment 1323. Deflection profiles
of the bridge segments in six different days are shown in Figure 51.
Deflections are relative to April 3, 1985 readings.

it is noted that the Segments 1303 and 1304 which were next fo the pier
support exhibited relative deflections in the order of 0.5 in. This indicates
that the pier support column of the bridge moved up vertically relative to the
elevation of the pier on April 3, 1985. 1In addition, the relative deflections
of Segments 1303 and 1304 findicated that the pier segment over Pier 13
exhibited a small rotation. This movement was also recorded by the tilt-meter
installed on the diaphragm of the pier segment.

Deflection measurements during construction are not presented 1in this
report because those measurements were not always referenced to a fixed bench
mark. Consequently, the deflection profile for the bridge cannot be
calculated easily. In addition, the accuracy of the recorded elevation
readings was to one tenth of a foot. This type of accuracy is satisfactory
for construction purposes, but rather crude for long-term monitoring
measurements.

ROTATION MEASUREMENTS
Rotation of the pier support is critical in properly evaluating the
measured defliection of the instrumented span. Measured rotation readings are

presented in Table 4 in arc minutes. An arc minute 1is one-sixtieth of a
degree. Posiltive rotation in Table 4 represents a clockwise rotation and a
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TABLE 4
TILT-METER MEASUREMENTS

Rotation Change 1in
Readings Rotation
Date Arc Minutes Arc Minutes

.19 0
.12 -0.07

6/23/87 | 12:00
6/24/87 1:15

(=]

353333333333333333333353 =

1G:00 .16 -0.03

1:30 .25 ~-0.06

6/25/817 2:15 .1 -0.08
7:00 .12 ~-0.07

11:00 .22 -0.03

.40 -0.79
.30 -0.89
.35 ~-0.84
.45 -0.74
.45 ~-0.74
A4 -0.75
.36 -0.83
AT -0.78
.82 -0.37
.92 -0.27
.95 -0.24
.90 -0.29
.12 -0.47
.66 -0.53
.64 ~0.55
.66 -0.53
1 -0.48

2/01/88 | 10:00

2/02/88 1:00

5/05/88 | 10:00

5/06/88

I
o
o
BT UTT LR TTT O MDD
OO TN OO O wd wd wl = o ) =

]
O~ O
i, oo
[ i ]
o
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negative rotation represents counter-clockwise rotation Tlooking West. It is
noted that a rotation change from June 23, 1987, to February 2, 1988, of 0.79
arc minutes represents 0.013 deg. (0.00023 rad.) rotation. A negative change
of 0.013 deg. rotation at the pier represented a vertical downward movement of
a rigid, non-deflecting cantilever span of 0.50 in. at Segment 1323.

Changes of the Pier 13 rotation within 24-hour periods ranged from 0.15 to
0.31 arc minutes on February 2, 1988, and May 5, 1988, respectively. A change
of 0.15 arc minutes represented a vertical movement of a rigid, non-deflecting
cantilever span of 0.09 in. at Segment 1323.

24-HOUR MEASUREMENTS

Measurements were made over four 24-hour periods. Data were collected on
June 24, 1987, September 23, 1987, February 1, 1988, and May 5, 1988, which
represented diurnal behavior of the Red River Bridge in summer, fall, winter,
and spring, respectively. In addition, 15-minute-interval tfemperature
readings were taken for 8 hours on August 5, 1986, and for 2 hours on April 1,
1987.

Strain Measurements

On June 24, 1987, strain readings were taken manually at {wo-hour
intervals for 29 hours. Variations of measured strains for the three
instrumented Segments 1301, 1313, and 1323 over the 29 hours beginning on
June 24, 1987, are shown in Figures 62 through 64, 65 through 67, and 68
through 71, respectively. These measurements provided & record of the daily
behavior of the three instrumented bridge segments. For c¢larity, strain
measurements were referenced fo the first reading taken at 7:00 a.m. on Jupe
24, 1987, This provides a better presentation of the daily strain
fluctuations experienced by the bridge segments. However, with the strain
values relative to the 7:00 a.m. readings on June 24, 1987, strain histories
of the bridge segment represented only changes of strains since the 7:00 a.m.
readings.

Positive strains represent shortening and negative strains represent
elongation. Variations of concrete temperatures at the location of the strain
gages are also given in each figure. Strains have been adjusted to a
reference temperature of 73°F for comparison purposes. Strain adjustments
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were based on the assumption that thermal movements were totally
unrestrained. Measured coefficient of concrete thermal expansion of 6.4
millionths/°F was used. Coefficients of thermal expansion for the sitrain
meters were based on the recommended values provided by the meter manufacturer.

Longitudinal strain variations for the three instrumented bridge Segments
1303, 1313, and 1323 on September 23, 1987, are shown 1in Figures 72 through
74, 75 through 77, and 78 through 81, respectively. Llongitudinal strain
measurements for Segments 1303, 1313, and 1323 on February 17, 1988, are given
in Figures 82 through 84, 85 through 87, and 88 through 91, and longitudinal
strain measurements for Segments 1303, 1373 and 1323 on May 5, 1988 are given
in Figures 92 through 94, 95 through 97, 98 through 101, respectively. Please
note that strain measurements were not shown in Figures 95 through 97 because
no strain measurements for Segment 1313 could be made on May 5, 1988.

Comparisons of the strains 1in the top and bottom slabs findicated that
there was a distinct time lag in the fluctuation of strains between the top
and bottom slabs. In addition, the magnitude of strain fluctuation was bigger
for the bottom slab strain gages than for the comparable top slab gages. The
recorded strain data indicated that the bridge responded to temperature in
some form of thermal movements.

It s noted from the figures that concrete strain vaiues changed with the
measured concrete temperature. Generally, strain variations were Targe on
June 24, 1987, September 23, 1987, and May 5, 1988. However, relative stable
strains were recorded on February 1, 1988. This was also true for the
measured concrete temperatures at the concrete sirain meter Tocations.

As expected, the concrete temperature at the top slab of the box girder
filuctuated substantially more than that at the bottom slab. As an example, on
June 24, 1987, temperature change of 15°F was observed for the top slab of
bridge segment 1303, shown in Figure 62 while the bottom slab experienced a
temperature fluctuation of oniy about 4°F.

Temperature Measurements

Measured daily temperature cycles of the dnstrumented bridge Segments
1303, 1313, and 1323 on August 5, 1986 are presented in Figures 102 through
104, 105 through 107, and 108 through 110, respectively. Distinct temperature
cycles were especially observed for the top slab of the box section. However,
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the temperature fluctuated differently depending on the locations of the
thermocouples.

Because one of the surface thermocouples ceased to provide good readings,
another thermocouple was conpected to that channel to measure inside air
temperature. The 1inside air temperature of the box is plotted in Figure 110.
There was a distinct time-lag between the inside box air temperature and the
concrete temperatures of +the +top slab. In addition, comparisons of
temperature measurements from Segments 1303 and 1323 indicated that concrete
temperatures of bridge Segment 1323 were siightly higher than that at the
corresponding Jocations in Segment 1313 and Segment 1303. Concrete
temperatures of the bridge segments tend to be higher as the bridge segments
are closer to mid-span. This is contrary to the assumption made by some
researchers (13) that there were no Tongitudinal temperature variations along
the bridge axis. The higher recorded temperatures for Segment 1323 were
probably due to the smaller sectional depth 4in Segment 1323 than that 1in
Segments 1303 and 1313.

Similar plots for the daily tfemperature variation measurements for
Segments 1303, 1313, and 1323 on June 24, 1987, September 23, 1987, and
February 1, 1988 are presented in Figures 111 throuugh 146. Correlation of
the figure numbers, segment locations and gage numbers is given in Table 5.

SHEAR STRAIN MEASUREMENTS

Shear strains were measured in the webs of the instrumented segments.
Measurements were taken from three Carlson strain meters in a rosette
arrangement. With the relative angle and position of the strain meters, shear
deformations can be calculated by the following formulae:

ny = Ej + Ec - 2 Eh for eab = 45° and eac = 90° qu 5-1

Yxy = 0.577 5 + 1.732 ec - 2.310 ey for 0zp = 60° and ©5c = 90°  Eq. 5-2

where vyxy = Shear Deformation, radian
eg = ¢€p = gc = Measured Strains of the Rosette
Oap = Angle Between the Horizontal and Diagonal Strain Meters a and b

©3c = Angle Between the Horizontal and Vertical Strain Meters a and c
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TABLE 5
CORRELATION OF FIGURE NUMBERS AND THE DAILY TEMPERATURE PLOTS FOR
PLOTS FOR DIFFERENT THERMOCOQUPLE LOCATIONS AND SEGMENTS

Figure No. Rate Segment Gages
5-86 June 24, 1987 1303 1-5, 6-10
5-87 1303 16-20, 21-25
5-88 1303 26-30
5-89 June 24, 1987 1313 2-5, 6-10
5-90 1313 11-15, 16-20
5-91 1313 21-25, 26-30
5-92 June 24, 1987 1323 1-5, 6-10
5-93 1323 11-15, 16-20
5-94 1323 22-25, 28-30
5-95 September 23, 1987 1303 1-5, 6-10
5-96 1303 16-20, 21-25,
5-97 1303 26-30
5-98 September 23, 1987 1313 1-5, 6-10
5-99 1313 11-15, 16-20
5-100 1313 21-25, 26-30
5-101 Sepltember 23, 1987 1323 1-5, 6-10
5-102 1323 11-15, 16-20
5-103 1323 22-25, 28-30
5-104 February 1, 1988 1303 1-5, 6-10
5-105 1303 16-20, 21-25
5-106 1303 26-30
5-107 February 1, 1988 1313 1-5, 6-10
5-108 1313 11-15, 16-20
5-109 1313 21-25, 26-30
5-110 February 1, 1988 1323 1-5, 6-10
5-111 1323 11-15, 16-20
5-112 1323 22-25, 28-30
5-113 May 5, 1988 1303 1-5, 6-10
5-114 1303 12-15, 16-20
5-11% 1303 21-25, 26-30
5-116 May 5, 1988 1313 1-5, 6-10
5-111 1313 i1-15, 16-20
5-118 1313 21-25, 28-30
5-119 May 5, 1988 1323 1-5, 6-10
5-120 1323 11-15, 16-20
5-121 1323 22-25, 26-30
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It is noted that o, for Segments 1303 and 1313 was set at 45°. However,
due to installation difficulties, o4 for Segment 1323 was 60°. Shear strain
calculations for the three segments were based on the appropriate equations
above.

With the sign convention of positive strain representing compressive
movements, positive shear strains yyy represent a decrease of shear angle
between the horizontal and vertical axis and negative shear strains Ty
represent an increase of the shear angle.

Measured shear strain histories of the Segments 1303, 1313, and 1323 are
shown in Figures 13147, 1748, and 149, respectively. Shear strains were
calculated for both the east and west web of the box girder. It is noted that
a big increase of shear strains was observed at age 395 days on Segment 1303,
age 240 days on Segment 1313, and age 152 days on Segment 1323. The ages of
these three segments represented the readings taken on October 17, 1984, when
the guardrail and roadway overlay was instalied. Consistently in the three
segments, the east web of the instrumented segments registered an increase of
shear strains while the west web exhibited a decrease in shear strains. Not
knowing the exact loading conditions of the bridge on October 17, 1984, it was
virtually impossible to find an explanation for the changes in shear strain.
However, subsequent shear strains indicated a stabilized strain history.

It is noted from Figures 147, 148, and 149 that the magnitude of shear
strain increases measured at Segment 1303 before the finstallation of gquard
railing were larger than that in Segment 1313 and Segment 1323. Segment 1303
was located next to the pier. Before the closing of the mid-span segment, the
span segments were in a balanced cantilever condition. Consequently, Segment
1303 experienced a higher dead weight-induced shear stress than those segments
closer to the end of the free cantilever.
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Figure 18. Locations of deflection measurement points
for Segments 1303, 1313, and 1323.
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a) Segment 1303

b} Segment 1313

¢) Segment 1323

FIG. 4-12 LOCATIONS OF DEFLECTION MEASUREMENT POINTS FOR
SEGMENTS 1303, 1313, and 1323
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Figure 19. Installed deflection measurement point.
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FIG. 4-13 INSTALLED DEFLECTION MEASUREMENT POINT
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Figure 21. Access to the inside of the box girder.

34




Figure 22. Schematic drawing of digital data acquisition system.
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FIG. 4-16 SCHEMATIC DRAWING OF DIGITAL DATA ACQUISITION SYSTEM
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Figure 24. Control programs.
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a) 15-MINUTE INTERVAL SCANNING b) DAILY AND WEEKLY INTERVAL SCANNING

FIG. 4-18 CONTROL PROGRAMS
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Figure 25. Recorded data printout.
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FIELD-MEASURED DATA

Measured field data are presented 1in this section. A schedule of
collected data with the corresponding construction event for the three
instrumented segments is given in Table 2. With the exception of the first
two readings of each gage, LTRC personnel took all measurements. CTL took the
first two readings for each gage. Data are presented under the following
categories: concrete strain measurements, temperature measurements,
deflection measurements, vrotation measurements, 24-hour measurements, and
shear strain measurements.

CONCRETE STRAIN MEASUREMENTS

Collected Carison strain readings were sent fo CTL by LTRC for data
reduction. Strain readings were reduced with a microcomputer. Reduced
concrete strains and concrete temperatures for each installed Carlson strain
meter are tabulated in another report (12).

Measured concrete strains represent concrete movements recorded hetween
the date of the measurement and the zero readings taken before concrete
casting. Strain readings Tisted in this report have been temperature adjusted
to the reference temperature of 73°F. Temperature adjustments were made so
that readings can be compared. The linear coefficient of thermal expansion
for concrete was assumed to be 5.5-millionths/°F. Coefficients of thermal
expansion for Carlson strain meters were based on the data supplied by the
meter manufacturer. Temperature-induced movements were assumed to be totally
unrestrained.

Relationships of measured concrete compressive strains since the zero
readings versus ages of concrete for Segments 1303, 1313, and 1323 are shown
in Figures 26 through 31, 32 through 37, and 38 through 43, respectively. It
is noted that the first two readings were not plotted in the figures because
of the heavy finfluence of the heat of hydration in the strain readings. The
horizontal axis in the figures represents the number of days since concrete
casting of the bridge segment, or simply the concrete age of the segment. The
vertical axis represents the concrete shortening per unit length at the
measured location.
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TABLE 2
READING SCHEDULE

Concrete Age, Days

Date Events Segment | Segment | Seqment
1303 1313 1323
9/17/83 | One Day After Casting of Segment 1303 1
9/23/83 | Removal of Formwork and Post Tensioning 7
10/03/83 | Casting of Segmenit 1304 17
10/05/83 | Stressing of Segment 1304 19
10/07/83 | Casting of Segment 1305 21
10/10/83 | Stressing of Segment 1305 24
10/13/83 | Casting of Segment 1306 27
10/14/83 | Stressing of Segment 1306 28
10/17/83 | Casting of Segment 1307 KN
10/19/83 | Stressing of Segment 1307 33
10/02/83 | Casting of Segmenit 1308 35
10/24/83 | Stressing of Segment 1308 38
10/26/83 | Casting of Segment 1309 40
10/28/83 | Casting of Segment 1310 42
10/31/83 | Stressing of Segment 1310 45
11/03/83 | Casting of Segment 1311 48
11/04/83 | Casting of Segment 1312 49
11/07/83 | Before Stressing of Segment 1312 52
11/07/83 | After Stressing of Segment 1312 52
11/10/83 | One Day After Casting of Segment 1313 55 1
11/15/83 | Stressing of Segment 1313 60 6
11/17/83 | Before Stressing of Segment 1314 62 8
11/18/83 | After Stressing of Sedament 1314 63 9
11/20/83 | Casting of Segment 1315 65 11
11/23/83 | Stressing of Segment 1315 68 14
11/30/83 | Casting of Segment 1316 75 21
12701783 | Stressing of Segment 1316 76 22
12/05/83 | Casting of Segment 1317 80 26
12/07/83 | Stressing of Segment 1317 82 28
12/08/83 | Casting of Segment 1318 83 29
12/13/83 | Casting of Segment 1319 88 34
12/21/83 | Stressing of Segment 1319 95 42
1/09/84 | Casting of Segment 1320 114 61
1/11/84 | Stressing of Segment 1320 116 63
1/16/84 | Casting of Segment 1321 121 68
1/25/84 | Casting of Segment 1322 130 11
1/30/84 | Stressing of Segment 1322, cable 135 g2
slipped and replaced
2/03/84 | Stressing of Segment 1322 139 86
2/06/84 | Three Days After Casting of Segment 1323 142 89 3
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TABLE 2
READING SCHEDULE (Continued)

Concrete Age, Days
Date Events Sedment | Segment | Segment
1303 1313 1323
2/10/84 | Stressing of Segment 1323 146 94 7
2/14/84 | Casting of Segment 1324 150 97 T
2/21/84 | Stressing of Segment 1324 157 104 18
3/02/84 | Casting of Segment 1325 166 112 26
6/01/84 | Casting of Closure Segment for 257 203 1171
Piers 12 & 13
6/05/84 | Posi-Tensioning of Llosure Segment 261 207 121
6/25/84 | Final Post-Tensioning of the 281 227 141
Instrumented Span
10/17/84 | Installation of Guard Rail and 395 240 154
Roadway Overlay
6/26/86 | Routine Readings 1012 857 m
6/23/87 | Trouble-Shooting of Data Acquisitiaon 1375 1220 1134
System
6/24/87 | 24-hour Readings in Summer 1376 1221 1135
9/23/87 | 24-hour Readings in Fall 1467 1312 1226
2/01/87 ;i 24-hour Readings in Winter 1596 1443 1357
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TEMPERATURE MEASUREMENTS

Whenever Carlson strain readings were taken, temperature readings from
installed thermocouples were taken also. Recorded concrete temperatures
versus ages of concrete for instrumented Segments 1303, 1313, and 1323 are
shown in Figures 44 through 48, 49 through 53, and 54 +through 58,
respectively. The horizontal axis of these figures represents the number of
days since concrete casting of the bridge segments. The vertical axis
represents measured temperature in degrees Fahrenheit. Gage number and
corresponding locations in the bridge segment are also illustrated 1in the
figures.

As shown in Figures 44, 49, and 54, maximum temperature differentials
between thermocouplies at the top and bottom silabs are approximately 20°F,
Temperature differential across the depth of a slab, however, was on the order
of 10°F.

DEFLECTION MEASUREMENTS

The second deflection measuring scheme was established on June 28, 1984.
Subseguent deflection profiles of six bridge segments were taken by LTRC. The
six bridge segments were Segments 1303, 1304, 1313, 1314, 1323, and 1324. The
first deflection readings taken on April 3, 1985 indicated that deflection
points at Segment 1313, (east and west), Segment 1304, (east) and Segment 1314
(east) were destrayed during construction. Consequently, new deflection
points at those four locations were resef on April 3, 1985,

In Table 2, both recorded elevation readings and relative deflections at
the measurement locations are listed. Elevation readings represent the actual
elevations of the deflection points using the bench mark No. 6 with its
elevation at 145.394 ft. Elevation profiles of the east deflection points on
June 28, 1984, and April 3, 1985, are shown in Figure 59. The profiles
represent the actual deflected shape of the Red River Bridge after completion
of construction. As indicated in Table 3, deflection measuring points were
reset for Segment 1313 (east and west), Segment 1304 (east), and Segment 1314
(east). Effects of the resetting of deflection points are shown in Figure 59
as the unevenness in the elevation profiles.
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